Using the iris dataset from scikit-learn, create a 2×2 grid of subplots. The visualizations are:
Example Output:

Use plt.subplots for creating a grid of plots and ax objects to plot specific visualizations.
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
import numpy as np
def iris_subplots():
iris = load_iris()
fig, ax = plt.subplots(2, 2, figsize=(10, 8))
# Top-left: Histogram of sepal length
ax[0, 0].hist(iris.data[:, 0], color='blue', bins=20)
ax[0, 0].set_title("Histogram of Sepal Length")
# Top-right: Scatter plot of sepal width against petal width
ax[0, 1].scatter(iris.data[:, 1], iris.data[:, 3], color='green')
ax[0, 1].set_title("Scatter plot: Sepal Width vs. Petal Width")
# Bottom-left: Box plot of petal lengths by species
data_to_plot = [iris.data[iris.target == i][:, 2] for i in range(3)]
ax[1, 0].boxplot(data_to_plot)
ax[1, 0].set_xticks([1, 2, 3])
ax[1, 0].set_xticklabels(iris.target_names)
ax[1, 0].set_title("Boxplot of Petal Lengths by Species")
# Bottom-right: Pie chart of species distribution
species_counts = np.bincount(iris.target)
ax[1, 1].pie(species_counts, labels=iris.target_names, autopct='%1.1f%%')
ax[1, 1].set_title("Species Distribution in Iris Dataset")
plt.tight_layout()
plt.show()
# Example usage
iris_subplots()
Unlock AI & Data Science treasures. Log in!