Using the iris dataset from scikit-learn, plot a heatmap representing the correlation coefficients between sepal length, sepal width, petal length, and petal width.
Example Output:
Use the imshow
method for plotting the heatmap.
import matplotlib.pyplot as plt from sklearn.datasets import load_iris import numpy as np def heatmap_species_measurements(): iris = load_iris() correlations = np.corrcoef(iris.data, rowvar=False) plt.imshow(correlations, cmap='hot', interpolation='nearest') plt.colorbar() plt.xticks(range(4), ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"], rotation=45) plt.yticks(range(4), ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"]) plt.title("Heatmap of Correlation Coefficients") plt.show() # Example usage heatmap_species_measurements()
Unlock AI & Data Science treasures. Log in!