Using the iris dataset from scikit-learn, create box plots for each measurement (sepal length, sepal width, etc.) by species. Customize the outliers with a different symbol and color.
Example Output:
Use the boxplot
function from Matplotlib, and customize the appearance of the outliers with the flierprops
parameter. Remember, you need to prepare separate data for each species, and consider using a loop to iterate through species for plotting.
import matplotlib.pyplot as plt from sklearn.datasets import load_iris def customized_box_plots(): iris = load_iris() labels = iris.feature_names fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(10, 5), sharey=True) colors = ['red', 'blue', 'green'] for target, color, ax in zip(range(3), colors, axes): data = [iris.data[iris.target == target][:, feature] for feature in range(4)] ax.boxplot(data, flierprops=dict(markerfacecolor=color, marker='D')) ax.set_title(iris.target_names[target]) ax.set_xticklabels(labels, rotation=45, fontsize=8) plt.suptitle("Customized Box Plots for Iris Dataset") plt.show() # Example usage customized_box_plots()
Unlock AI & Data Science treasures. Log in!