Load the ‘iris’ dataset, compute a correlation matrix. Create a clustermap and ensure that the leaf colors are customized based on the species.
Example Output:
Use sns.clustermap
and play with the row_colors
parameter to customize the leaf colors.
import seaborn as sns import matplotlib.pyplot as plt def plot_iris_cluster(): iris_data = sns.load_dataset('iris') species_colors = iris_data['species'].map({ 'setosa': 'red', 'versicolor': 'blue', 'virginica': 'green' }) sns.clustermap(iris_data.drop('species', axis=1).corr(), row_colors=species_colors) plt.show() plot_iris_cluster()
Unlock AI & Data Science treasures. Log in!